avav588con,最近2019中文免费字幕在线观看,欧美一道本一区二区三区,九九热在线观看,经典好看免费AV

安科瑞電子商務(wù)(上海)有限公司

免費(fèi)會(huì)員
您現(xiàn)在的位置: 首頁(yè)> 技術(shù)文章 > 【解決方案】電動(dòng)汽車(chē)的有序充電管理及其對(duì)配網(wǎng)的影響分析

系統(tǒng)集成

電力監(jiān)控與保護(hù)

電氣安全

電能管理

電能質(zhì)量治理

電量傳感器

新能源

環(huán)保數(shù)采儀

城市管廊選型方案

lora無(wú)線計(jì)量電力儀表

餐飲油煙監(jiān)測(cè)云平臺(tái)

企業(yè)能源管控平臺(tái)

船舶岸電計(jì)費(fèi)云平臺(tái)

銀行夜安全用電云平臺(tái)

電瓶車(chē)充電樁收費(fèi)運(yùn)營(yíng)云平臺(tái)

電流互感器

AM系列微機(jī)保護(hù)測(cè)控裝置

ARB5弧光保護(hù)裝置

路燈安全用電監(jiān)控系統(tǒng)

光伏電力監(jiān)控裝置

無(wú)線測(cè)溫系統(tǒng)

AMC配電監(jiān)控裝置

AMB智能母線監(jiān)控解決方案

ARD系列智能電動(dòng)機(jī)保護(hù)器

DDSY1352預(yù)付費(fèi)電能表

AEM72三相多功能電能表

智能網(wǎng)關(guān)

電能質(zhì)量在線監(jiān)測(cè)裝置

智能安全配電裝置

數(shù)據(jù)中心

能源物聯(lián)網(wǎng)云平臺(tái)

免費(fèi)會(huì)員·9年
聯(lián)人:
張繼東

掃一掃訪問(wèn)手機(jī)商鋪

【解決方案】電動(dòng)汽車(chē)的有序充電管理及其對(duì)配網(wǎng)的影響分析

2023-11-14  閱讀(1263)

分享:

 

未曉妃

安科瑞電氣股份有限公司 上海嘉定 201801

   電動(dòng)汽車(chē)以無(wú)序充電方式接入配電網(wǎng)時(shí)與網(wǎng)內(nèi)基礎(chǔ)用電負(fù)荷疊加,會(huì)形成峰上加峰的現(xiàn)象,不利于配電網(wǎng)的穩(wěn)定運(yùn)行。針對(duì)上述問(wèn)題,首先對(duì)私家車(chē)充電負(fù)荷進(jìn)行建模,采用蒙特卡羅抽樣模擬電動(dòng)汽車(chē)無(wú)序行為下的充電負(fù)荷曲線。然后提出一種新型的多時(shí)段動(dòng)態(tài)充電價(jià)格機(jī)制,引導(dǎo)車(chē)主有序充電,并以配電網(wǎng)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù),優(yōu)化電動(dòng)汽車(chē)充電行為。比較后在IEEEE3節(jié)點(diǎn)配電網(wǎng)中,分別分析有序和無(wú)序充電負(fù)荷并網(wǎng)時(shí)電動(dòng)汽車(chē)充電費(fèi)用、配電網(wǎng)電壓偏移率及網(wǎng)損,結(jié)果表明所提策略可有效兼顧用戶(hù)利益和配電網(wǎng)的穩(wěn)定運(yùn)行。

1私家車(chē)無(wú)序模式充電模型

  本文從以下4個(gè)方面構(gòu)建電動(dòng)汽車(chē)的充電模型。a?電動(dòng)汽車(chē)電池特性本文選用鋰電池為研究對(duì)象。與普通汽車(chē)相同,不同類(lèi)型私家車(chē)電池容量有差異。

  式中fQ為私家車(chē)鋰電池容量的概率密度;x表示該時(shí)刻的電池容量大小,一般取值為20-30kwh。鋰電池充電變化過(guò)程如圖1所示。由于充電起始過(guò)程和結(jié)束過(guò)程的時(shí)間非常短暫,可以近似地認(rèn)為鋰電池充電是恒功率充電。b?車(chē)主日行駛里程本文引用美國(guó)交通部汽車(chē)日出行數(shù)據(jù)進(jìn)行分析

計(jì)算[13],可知電動(dòng)汽車(chē)車(chē)主每日用車(chē)行駛里程數(shù)的概率密度函數(shù)為

式中:fD為車(chē)主日行駛里程的概率密度函數(shù);μD為期望值;σD為標(biāo)準(zhǔn)差。c?車(chē)主比較后歸程時(shí)刻假設(shè)車(chē)主每日結(jié)束行程時(shí)刻即為電動(dòng)汽車(chē)每日開(kāi)始充電時(shí)刻,比較后歸程概率密度函數(shù)為

式中:fs為車(chē)主比較后規(guī)程的概率密度函數(shù);w為回家時(shí)刻;μs為期望值;σs為標(biāo)準(zhǔn)差。d?車(chē)主離家時(shí)間假設(shè)車(chē)主每日用車(chē)期間只可放電不可充電,出行開(kāi)始時(shí)刻的概率密度函數(shù)為

式中:fe為車(chē)主啟程離家的概率密度函數(shù);v為離家時(shí)刻。結(jié)合用戶(hù)出行數(shù)據(jù)及電動(dòng)汽車(chē)充電模型利用蒙特卡洛算法,得到500輛電動(dòng)汽車(chē)的24h無(wú)序充電負(fù)荷曲線,如圖2所示。

2多時(shí)段動(dòng)態(tài)電價(jià)下電動(dòng)汽車(chē)有序充電模型

2.1多時(shí)段動(dòng)態(tài)電價(jià)區(qū)間劃分

  傳統(tǒng)的分時(shí)電價(jià)一旦制定后其區(qū)間不再變化,但居民的用電行為會(huì)隨著季節(jié)變化、地域不同和個(gè)人舒適度而改變,與原分時(shí)電價(jià)的價(jià)格區(qū)間范圍有偏差,產(chǎn)生負(fù)荷和電價(jià)的峰谷不匹配的現(xiàn)象。而電動(dòng)汽車(chē)的充電行為在時(shí)間上有很大隨機(jī)性,導(dǎo)致實(shí)時(shí)電價(jià)的制定考慮因素十分復(fù)雜。因此本文根據(jù)短期負(fù)荷預(yù)測(cè)為基礎(chǔ)提出一種新型的多時(shí)段動(dòng)態(tài)電價(jià)策略。目前為止,隸屬度函數(shù)是對(duì)傳統(tǒng)用電價(jià)格進(jìn)行劃分的比較成熟且通用性比較廣的方法。以表1某地區(qū)分時(shí)電價(jià)為例,首先基于模糊數(shù)學(xué)的理論,可將每個(gè)時(shí)間段認(rèn)為是一個(gè)獨(dú)立的模糊集合,然后利用隸屬度函數(shù)構(gòu)建時(shí)段內(nèi)每時(shí)刻對(duì)應(yīng)的隸屬度,并根據(jù)隸屬度值將其劃分到對(duì)應(yīng)的時(shí)間段[14]。再將短期預(yù)測(cè)的基礎(chǔ)負(fù)荷劃分成多時(shí)段,根據(jù)每時(shí)段對(duì)應(yīng)的負(fù)荷值計(jì)算相對(duì)應(yīng)的電價(jià)。

式中:Cmax和Cmin分別為分時(shí)電價(jià)的峰值與谷值;C∗為每時(shí)段負(fù)荷在價(jià)格區(qū)間上的映射。

式中:Ci為基準(zhǔn)。

2.2電動(dòng)汽車(chē)有序充電策略

  電動(dòng)汽車(chē)聚合商是專(zhuān)門(mén)針對(duì)電動(dòng)汽車(chē)充電進(jìn)行資源整合的參與者,其部署的智能充電樁可提供常規(guī)充電模式和充電優(yōu)化模式。常規(guī)充電模式可將電動(dòng)汽車(chē)的電池充至期望電量值,而優(yōu)化模式則需要根據(jù)車(chē)主個(gè)人用電需求輸入結(jié)束充電時(shí)刻及結(jié)束時(shí)刻的充電期望值。車(chē)輛接入后,充電樁將獲取該車(chē)信息,將輸入值及車(chē)電池的剩余電量反饋到系統(tǒng)調(diào)度中間,對(duì)收集的數(shù)據(jù)進(jìn)行在線智能計(jì)算,形成電動(dòng)汽車(chē)的充電計(jì)劃。

2.3目標(biāo)函數(shù)

  本文以網(wǎng)內(nèi)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù)。

式中:F為目標(biāo)函數(shù);N為谷時(shí)段數(shù)目;Pi為第i個(gè)時(shí)段配電網(wǎng)的基礎(chǔ)負(fù)荷值。

2.4約束條件

小值和比較大值。

  Bu充電時(shí)段T約束Ts≤T≤Te(12)式中:Ts為車(chē)主每日充電開(kāi)始時(shí)刻;Te為當(dāng)天充電結(jié)束時(shí)刻。c?總電量S約束本文優(yōu)化中不計(jì)電池?fù)p耗,假設(shè)電池容量為恒定值。

式中:K為充電的電動(dòng)汽車(chē)數(shù)目;Tchi為第i輛車(chē)總充電時(shí)間。

2.5算法求解

  傳統(tǒng)的遺傳算法是一種起源于生物進(jìn)化規(guī)律演變的尋優(yōu)算法。從任意初始種群開(kāi)始,通過(guò)選擇、交叉、變異等環(huán)節(jié),產(chǎn)生一些對(duì)環(huán)境適應(yīng)度高的個(gè)體并進(jìn)入搜索空間中更好的區(qū)域,不斷繁衍進(jìn)化,比較終得到比較大適應(yīng)度的個(gè)體作為比較優(yōu)解輸出。但由于進(jìn)化過(guò)程中交叉概率參數(shù)及變異概率參數(shù)為定值,忽略了進(jìn)化過(guò)程中種群的自適應(yīng)特性,存在過(guò)早收斂的缺陷。且算法沒(méi)有保留精英機(jī)制,適應(yīng)度高的個(gè)體可能在進(jìn)化中丟失好的*因。為了解決以上問(wèn)題,本文采用自適應(yīng)交叉概率Kc和自適應(yīng)變異概率Km以及精英保留機(jī)制進(jìn)行優(yōu)化求解[15]。自適應(yīng)交叉概率Kc和自適應(yīng)變異概率Km公式如下:

  式中:K1為基礎(chǔ)交叉概率;fmax為個(gè)體比較大適應(yīng)度;fav為個(gè)體適應(yīng)度值的平均值;fl為每相鄰交叉?zhèn)€體中較大的適應(yīng)度。

  式中:K2為基礎(chǔ)變異概率;fi為第I代進(jìn)化的閾值,公式如下:

 

  式中:fiI為第i個(gè)個(gè)體;Keep=1,則精英保留,Keep=0,則不保留。優(yōu)化過(guò)程如圖4。

3算例仿真與分析

3.1仿真場(chǎng)景設(shè)定

  本文仿真過(guò)程選擇在IEEE33節(jié)點(diǎn)配電網(wǎng)中進(jìn)行,其拓?fù)淙鐖D5所示。假設(shè)節(jié)點(diǎn)1為平衡節(jié)點(diǎn),即電源接入節(jié)點(diǎn),余下32個(gè)節(jié)點(diǎn)全部為PQ節(jié)點(diǎn)。假設(shè)整個(gè)配電網(wǎng)系統(tǒng)中含基礎(chǔ)負(fù)荷以及1500輛電動(dòng)汽車(chē),車(chē)群被均勻分配到節(jié)點(diǎn)19,23和26中。以私家車(chē)比亞迪E1車(chē)型作為研究對(duì)象,規(guī)定每輛電動(dòng)汽車(chē)的動(dòng)力電池規(guī)格相同,參數(shù)為:220V,16A慢充模式,限制容量為35KWH,3.52KWH恒功率充電,充電效率為0.82,轉(zhuǎn)換效率為0.90

3.2對(duì)用電負(fù)荷的分析

  電動(dòng)汽車(chē)以不同方式充電的負(fù)荷曲線及配電網(wǎng)總負(fù)荷曲線如圖6、圖7所示。由圖6和圖7可知,通過(guò)動(dòng)態(tài)價(jià)格的引導(dǎo),電動(dòng)汽車(chē)充電行為趨于有序化,車(chē)主對(duì)充電時(shí)間段的選擇逐漸向夜間轉(zhuǎn)移,負(fù)荷峰值水平大幅度下降,說(shuō)明新型電價(jià)的提出可以使車(chē)主的用電行為不再大面積集中,系統(tǒng)總用電負(fù)荷曲線相對(duì)變得平緩,有削峰填谷的效果。

  由表2可知,無(wú)序充電車(chē)主日繳納電費(fèi)為21880.8元,基于多時(shí)段動(dòng)態(tài)電價(jià)的有序充電日繳費(fèi)為17248.80元,比無(wú)序充電費(fèi)用降低了21.17%。因此新電價(jià)機(jī)制的提出可有效降低車(chē)主充電成本。

3.3對(duì)配電網(wǎng)影響分析

  將IEEE33節(jié)點(diǎn)配電網(wǎng)模型的節(jié)點(diǎn)負(fù)荷參數(shù)和優(yōu)化后的有序充電負(fù)荷數(shù)據(jù)導(dǎo)入MATLAB軟件語(yǔ)言編程,對(duì)比以下3種場(chǎng)景下的配電網(wǎng)電壓偏移及網(wǎng)損。場(chǎng)景1:配電網(wǎng)內(nèi)未接入電動(dòng)汽車(chē)負(fù)荷。場(chǎng)景2:配電網(wǎng)內(nèi)接入無(wú)序充電負(fù)荷。場(chǎng)景3:配電網(wǎng)內(nèi)接入有序充電負(fù)荷。圖8表示部分時(shí)段下3種用電方式的網(wǎng)損率??梢?jiàn)18.00-24.00由于無(wú)序充電負(fù)荷的接入使得網(wǎng)內(nèi)網(wǎng)損明顯升高。原因是車(chē)主歸程后的無(wú)序充電行為與用戶(hù)基礎(chǔ)用電行為的一致性導(dǎo)致網(wǎng)內(nèi)用電功率激增。09.00-21.00時(shí),對(duì)比接入無(wú)序充電負(fù)荷和有序充電負(fù)荷,后者可有效降低配電網(wǎng)網(wǎng)損,尤其在電價(jià)高峰時(shí)段21.00網(wǎng)損率下降了2.77%,效果比較顯著。說(shuō)明多時(shí)段分時(shí)電價(jià)的提出引導(dǎo)車(chē)主有序充電對(duì)調(diào)節(jié)配電網(wǎng)網(wǎng)損具有一定效果。

  由圖9可知,場(chǎng)景1配電網(wǎng)未接入充電負(fù)荷時(shí)的電壓偏移都控制在±7%以?xún)?nèi),縱橫對(duì)比沒(méi)有發(fā)現(xiàn)嚴(yán)重的電壓偏移現(xiàn)象,但是節(jié)點(diǎn)18和19在20.00-21.00時(shí)間段上有局部節(jié)點(diǎn)處在越限邊界。由圖10可知,場(chǎng)景2中配電網(wǎng)內(nèi)接入無(wú)序充電負(fù)荷時(shí),節(jié)點(diǎn)13-19和28-33在晚間出現(xiàn)電壓越限情況,原因是無(wú)序充電負(fù)荷的高峰期恰巧與網(wǎng)內(nèi)基礎(chǔ)負(fù)荷用電的高峰期時(shí)段相疊。

  圖11表示場(chǎng)景3下配電網(wǎng)內(nèi)接入有序充電負(fù)荷時(shí)各個(gè)節(jié)點(diǎn)電壓的偏移情況。與圖9和圖10對(duì)比可知,有序充電負(fù)荷的接入使局部節(jié)點(diǎn)越限現(xiàn)象得到*解,偏移的電壓回歸到正常標(biāo)準(zhǔn)范圍內(nèi)。說(shuō)明所提出的新型動(dòng)態(tài)分時(shí)電價(jià)可以通過(guò)對(duì)電動(dòng)汽車(chē)進(jìn)行充電有序化管理來(lái)改*配電網(wǎng)電壓偏移現(xiàn)象。

由于大量負(fù)荷突然接入使各節(jié)點(diǎn)電壓發(fā)生偏移現(xiàn)象,因此對(duì)比較大負(fù)載量時(shí)刻(21.00)各節(jié)點(diǎn)電壓偏移情況進(jìn)行對(duì)比更有意義,結(jié)果如圖12所示。

  由圖12可知,未接入無(wú)序負(fù)荷時(shí)網(wǎng)內(nèi)各節(jié)點(diǎn)的電壓偏移都控制在±7%范圍以?xún)?nèi),電壓無(wú)越限行為。當(dāng)無(wú)序充電負(fù)荷并網(wǎng)后,一部分節(jié)點(diǎn)電壓發(fā)生顯著偏移,且偏移量均超過(guò)規(guī)定標(biāo)準(zhǔn)范圍。而經(jīng)過(guò)多時(shí)段動(dòng)態(tài)電價(jià)策略調(diào)控的有序充電行為接入配電網(wǎng)后,網(wǎng)內(nèi)各節(jié)點(diǎn)電壓值還原到標(biāo)準(zhǔn)范圍以?xún)?nèi),其中變化比較顯著的18號(hào)節(jié)點(diǎn)電壓標(biāo)幺值由0.9467調(diào)整到0.9828,電壓偏移率修正了3.61%。

4安科瑞充電樁收費(fèi)運(yùn)營(yíng)云平臺(tái)

4.1概述

  AcrelCloud-9000安科瑞充電柱收費(fèi)運(yùn)營(yíng)云平臺(tái)系統(tǒng)通過(guò)物聯(lián)網(wǎng)技術(shù)對(duì)接入系統(tǒng)的電動(dòng)電動(dòng)自行車(chē)充電站以及各個(gè)充電整法行不間斷地?cái)?shù)據(jù)采集和監(jiān)控,實(shí)時(shí)監(jiān)控充電樁運(yùn)行狀態(tài),進(jìn)行充電服務(wù)、支付管理,交易結(jié)算,資要管理、電能管理,明細(xì)查詢(xún)等。同時(shí)對(duì)充電機(jī)過(guò)溫保護(hù)、漏電、充電機(jī)輸入/輸出過(guò)壓,欠壓,絕緣低各類(lèi)故障進(jìn)行預(yù)警;充電樁支持以太網(wǎng)、4G或WIFI等方式接入互聯(lián)網(wǎng),用戶(hù)通過(guò)微信、支付寶,云閃付掃碼充電。

4.2應(yīng)用場(chǎng)所

  適用于民用建筑、一般工業(yè)建筑、居住小區(qū)、實(shí)業(yè)單位、商業(yè)綜合體、學(xué)校、園區(qū)等充電樁模式的充電基礎(chǔ)設(shè)施設(shè)計(jì)。

4.3系統(tǒng)結(jié)構(gòu)

4.3.1系統(tǒng)分為四層:

1)即數(shù)據(jù)采集層、網(wǎng)絡(luò)傳輸層、數(shù)據(jù)中間層和客戶(hù)端層。

2)數(shù)據(jù)采集層:包括電瓶車(chē)智能充電樁通訊協(xié)議為標(biāo)準(zhǔn)modbus-rtu。電瓶車(chē)智能充電樁用于采集充電回路的電力參數(shù),并進(jìn)行電能計(jì)量和保護(hù)。

3)網(wǎng)絡(luò)傳輸層:通過(guò)4G網(wǎng)絡(luò)將數(shù)據(jù)上傳至搭建好的數(shù)據(jù)庫(kù)服務(wù)器。

4)數(shù)據(jù)中間層:包含應(yīng)用服務(wù)器和數(shù)據(jù)服務(wù)器,應(yīng)用服務(wù)器部署數(shù)據(jù)采集服務(wù)、WEB網(wǎng)站,數(shù)據(jù)服務(wù)器部署實(shí)時(shí)數(shù)據(jù)庫(kù)、歷史數(shù)據(jù)庫(kù)、基礎(chǔ)數(shù)據(jù)庫(kù)。

5)應(yīng)客戶(hù)端層:系統(tǒng)管理員可在瀏覽器中訪問(wèn)電瓶車(chē)充電樁收費(fèi)平臺(tái)。終端充電用戶(hù)通過(guò)刷卡掃碼的方式啟動(dòng)充電。

  小區(qū)充電平臺(tái)功能主要涵蓋充電設(shè)施智能化大屏、實(shí)時(shí)監(jiān)控、交易管理、故障管理、統(tǒng)計(jì)分析、基礎(chǔ)數(shù)據(jù)管理等功能,同時(shí)為運(yùn)維人員提供運(yùn)維APP,充電用戶(hù)提供充電小程序。

4.4安科瑞充電樁云平臺(tái)系統(tǒng)功能

4.4.1智能化大屏

  智能化大屏展示站點(diǎn)分布情況,對(duì)設(shè)備狀態(tài)、設(shè)備使用率、充電次數(shù)、充電時(shí)長(zhǎng)、充電金額、充電度數(shù)、充電樁故障等進(jìn)行統(tǒng)計(jì)顯示,同時(shí)可查看每個(gè)站點(diǎn)的站點(diǎn)信息、充電樁列表、充電記錄、收益、能耗、故障記錄等。統(tǒng)一管理小區(qū)充電樁,查看設(shè)備使用率,合理分配資源。

4.4.2.實(shí)時(shí)監(jiān)控

  實(shí)時(shí)監(jiān)視充電設(shè)施運(yùn)行狀況,主要包括充電樁運(yùn)行狀態(tài)、回路狀態(tài)、充電過(guò)程中的充電電量、充電電壓/電流,充電樁告警信息等。

4.4.3交易管理

平臺(tái)管理人員可管理充電用戶(hù)賬戶(hù),對(duì)其進(jìn)行賬戶(hù)進(jìn)行充值、退款、凍結(jié)、注銷(xiāo)等操作,可查看小區(qū)用戶(hù)每日的充電交易詳細(xì)信息。

4.4.4故障管理

設(shè)備自動(dòng)上報(bào)故障信息,平臺(tái)管理人員可通過(guò)平臺(tái)查看故障信息并進(jìn)行派發(fā)處理,同時(shí)運(yùn)維人員可通過(guò)運(yùn)維APP收取故障推送,運(yùn)維人員在運(yùn)維工作完成后將結(jié)果上報(bào)。充電用戶(hù)也可通過(guò)充電小程序反饋現(xiàn)場(chǎng)問(wèn)題。

4.4.5統(tǒng)計(jì)分析

通過(guò)系統(tǒng)平臺(tái),從充電站點(diǎn)、充電設(shè)施、、充電時(shí)間、充電方式等不同角度,查詢(xún)充電交易統(tǒng)計(jì)信息、能耗統(tǒng)計(jì)信息等。

4.4.6基礎(chǔ)數(shù)據(jù)管理

在系統(tǒng)平臺(tái)建立運(yùn)營(yíng)商戶(hù),運(yùn)營(yíng)商可建立和管理其運(yùn)營(yíng)所需站點(diǎn)和充電設(shè)施,維護(hù)充電設(shè)施信息、價(jià)格策略、折扣、優(yōu)惠活動(dòng),同時(shí)可管理在線卡用戶(hù)充值、凍結(jié)和解綁。

4.4.7運(yùn)維APP

面向運(yùn)維人員使用,可以對(duì)站點(diǎn)和充電樁進(jìn)行管理、能夠進(jìn)行故障閉環(huán)處理、查詢(xún)流量卡使用情況、查詢(xún)充電\充值情況,進(jìn)行遠(yuǎn)程參數(shù)設(shè)置,同時(shí)可接收故障推送。

4.4.8充電小程序

面向充電用戶(hù)使用,可查看附近空閑設(shè)備,主要包含掃碼充電、賬戶(hù)充值,充電卡綁定、交易查詢(xún)、故障申訴等功能。

4.5系統(tǒng)硬件配置

 

 

 

5結(jié)語(yǔ)

  本文基于分時(shí)電價(jià)與短期負(fù)荷預(yù)測(cè)提出了一種新型多時(shí)段動(dòng)態(tài)充電價(jià)格機(jī)制,引導(dǎo)車(chē)主規(guī)劃用車(chē)安排,使充電行為由無(wú)序變?yōu)橛行?。建立以配電網(wǎng)內(nèi)負(fù)荷波動(dòng)比較小為目標(biāo)函數(shù),利用MATLAB軟件進(jìn)行算法編程,結(jié)果表明所提出的多時(shí)段動(dòng)態(tài)電價(jià)策略可減小網(wǎng)內(nèi)的負(fù)荷波動(dòng),有明顯的削峰填谷作用,為車(chē)主減少21.17%的充電成本。此外還有效降低了21.00用電高峰期2.77%的網(wǎng)損率并修正18號(hào)節(jié)點(diǎn)3.61%的電壓偏移率,實(shí)現(xiàn)了保證車(chē)主充電利益與提高配電網(wǎng)運(yùn)行安全的并存。

 

 

會(huì)員登錄

×

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
產(chǎn)品對(duì)比 二維碼

掃一掃訪問(wèn)手機(jī)商鋪

對(duì)比框

在線留言